This project aimed to predict educational outcomes, specifically whether students would drop out, enroll, or graduate, based on various features. The dataset encompassed diverse information, including application modes, numerical features, and binary indicators. Methodology: The project employed a range of machine learning models, employing various algorithms to find the most suitable for the classification task. Models included K-Nearest Neighbors, Gradient Boosting, Decision Trees, Random Forests, Support Vector Machines, Gaussian Naive Bayes, Neural Networks, Linear Discriminant Analysis, and Quadratic Discriminant Analysis. Exploratory Data Analysis (EDA) : Explored distribution of application modes, numerical features, and target variable. Utilized visualizations like pie charts, histograms, and correlation matrices for insights. Data Preprocessing: Transformed the target variable into binary classes for simplification. Split the dataset into training and testing sets. Standard...
Comments
Post a Comment